Abstract

This article deals with a dual second-order generalized integrator phase-locked loop (DSOGI-PLL) with in-loop filter-based control approach for a single-stage, three-phase three-wire solar-grid-interfaced system under abnormal grid voltage conditions, unbalanced load conditions, and varying solar insolation levels. The DSOGI with in-loop filter algorithm with enhanced filtering capability, employed for both voltages and currents, helps to attenuate the harmonics, eliminates dc offset, and estimates the sequence components. This algorithm elicits the fundamental component of highly nonlinear load current required for calculating the reference magnitude of the grid currents. Even during unbalanced load conditions, these fundamental components of currents are free from the dc offset and dominant harmonics of double frequency. In order to maintain the sinusoidal and balanced grid currents, the positive sequence voltages are estimated to get the accurate unit templates during the unbalanced and abnormal grid voltages conditions. Moreover, these positive sequence voltages are used by PLL to compute the phase required for the magnitude and the angle calculation of the currents and voltages. The dc-link voltage is maintained at maximum power point by an incremental conductance based technique. This system is simulated in MATLAB/Simulink environment. Test results on a developed laboratory prototype are observed in accordance with the standard of the IEEE-519.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.