Abstract

This work studies the interaction of the DSMC vibrational relaxation models and reaction models of molecular nitrogen at different Mach numbers where such processes are important. The V-T transition models assessed include the discrete Larson-Borgnakke model and Forced Harmonic Oscillator (FHO). The total collision energy (TCE) and QCT models for the NO formation reaction were considered and the reaction from different N2 vibrational excited states was included in the simulations. It was found the vibrational temperature is higher with the FHO model compared to the LB approach since the FHO model has the higher effective vibrational relaxation rates. Furthermore the use of the QCT rates compared to the usual, TCE model gave a substantially higher NO concentration and smaller shock width.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.