Abstract

Direct Simulation Monte Carlo (DSMC) and NavierStokes calculations are performed for a Mach 11 25 deg.-55 deg. spherically blunted biconic. The conditions are such that flow is laminar, with separation occurring at the cone-cone juncture. The simulations account for thermochemical nonequilibrium based on standard Arrhenius chemical rates for nitrogen dissociation and Millikan and White vibrational relaxation. The simulation error for the Navier-Stokes (NS) code is estimated to be 2% for the surface pressure and 10% for the surface heat flux. The grid spacing for the DSMC simulations was adjusted to be less than the local mean-freepath (mfp) and the time step less than the cell transient time of a computational particle. There was overall good agreement between the two simulations; however, the recirculation zone was computed to be larger for the NS simulation. A sensitivity study is performed to examine the effects of experimental uncertainty in the freestream properties on the surface pressure and heat flux distributions. The surface quantities are found to be extremely sensitive to the vibrational excitation state of the gas at the test section, with differences of 25% found in the surface pressure and 25%-35% for the surface heat flux. These calculations are part of a blind validation comparison and thus the experimental data has not yet been re

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.