Abstract

Neutrophils are activated following hemorrhagic shock and the accumulation of neutrophils in the lung is associated with lung injury. This research investigated the effects of a semisynthetic 2-benzoylaminobenzoic acid derivative, methyl 2-(2-fluorobenzamido)benzoate (DSM-RX78), on superoxide anion (O 2 −) production in formyl- l-methionyl- l-leucyl- l-phenylalanine (FMLP)-activated human neutrophils, and on lung injury in Sprague–Dawley rats subjected to trauma-hemorrhage. DSM-RX78 concentration-dependently inhibited O 2 − production, but not elastase release, in FMLP-activated human neutrophils. DSM-RX78 displayed no superoxide-scavenging ability, and it failed to alter the subcellular NADPH oxidase activity. Significantly, DSM-RX78 increased cAMP formation and protein kinase (PK)A activity in FMLP-activated neutrophils, which occurred through the selective inhibition of cAMP-specific phosphodiesterase (PDE) activity but not an increase in adenylate cyclase function or cGMP-specific PDE activity. These results show that DSM-RX78 is a new inhibitor of cAMP-specific PDE. Moreover, DSM-RX78 reduced FMLP-induced phosphorylation of protein kinase B (Akt), but not calcium mobilization. The inhibitory effects of DSM-RX78 on O 2 − production and Akt phosphorylation were reversed by PKA inhibitors, suggesting that DSM-RX78 regulates O 2 − production of human neutrophils by promoting cAMP/PKA-dependent inhibition of Akt activation. On the other hand, administration of DSM-RX78 significantly attenuated the increase in myeloperoxidase activity and edema in the lung, as well as protein concentrations in bronchoalveolar lavage fluid in rats after trauma-hemorrhagic shock. In summary, these results strongly suggest that DSM-RX78 exerts anti-inflammatory effects, which result from the elevation of cAMP levels and PKA activity through its inhibition of cAMP-specific PDE. Also, our findings show that DSM-RX78 attenuates hemorrhagic shock-induced lung injury in rats.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.