Abstract

The full morphology of single neurons is indispensable for understanding cell types, the basic building blocks in brains. Projecting trajectories are critical to extracting biologically relevant information from neuron morphologies, as they provide valuable information for both connectivity and cell identity. We developed an artificial intelligence method, deep sequential model (DSM), to extract concise, cell-type-defining features from projections across brain regions. DSM achieves more than 90% accuracy in classifying 12 major neuron projection types without compromising performance when spatial noise is present. Such remarkable robustness enabled us to efficiently manage and analyze several major full-morphology data sources, showcasing how characteristic long projections can define cell identities. We also succeeded in applying our model to both discovering previously unknown neuron subtypes and analyzing exceptional co-expressed genes involved in neuron projection circuits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.