Abstract
Recently, the authors investigated the post-buckling behaviour, strength and Direct Strength Method (DSM) design of cold-formed steel (CFS) fixed-ended singly symmetric columns buckling in major-axis flexural-torsional modes (FMT), some of which were shown to experience interaction with minor-axis flexural (Fm) buckling − FMT-Fm (global-global) interaction. The main fruit of this investigation was the development of an efficient DSM-based design approach capable of predicting the failure loads of such columns, regardless of their failure mode nature (pure FMT or FMT-Fm interactive). This work extends the scope of the above study to singly symmetric columns with three types of pin-ended support conditions, all fixed with respect to torsion and having warping fully prevented. Columns with seven cross-section shapes are considered, having their wall dimensions, lengths and yield stresses selected to ensure covering wide FMT slenderness ranges and various ratios between the Fm and FMT buckling loads. Following an investigation on the elastic and elastic-plastic post-buckling behaviours of the selected pin-ended columns, paying attention to the possible occurrence of FMT-Fm interaction, parametric studies are carried out to gather extensive pin-ended column failure load data, including some potentially associated with FMT-Fm interactive collapses. Then, the assembled numerical failure loads are used to show that (i) the available DSM-based strength curves are only able to predict adequately part of them and, thus, (ii) novel DSM-based design curves are needed to estimate the failure loads of the remaining pin-ended singly symmetric columns buckling in FMT modes. After developing such curves and assessing their merits (safety and reliability), it is concluded that different DSM-based design curves/approaches must be employed for columns with each type of pin-ended support conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.