Abstract

In this paper, we propose a Distance-based Sequence Indexing Method (DSIM) for indexing and searching genome databases. Borrowing the idea of video compression, we compress the genomic sequence database around a set of automatically selected reference words, formed from high-frequency data substrings and substrings in past queries. The compression captures the distance of each non-reference word in the database to some reference word. At runtime, a query is processed by comparing its substrings with the compressed data strings, through their distances to the reference words. We also propose an efficient scheme to incrementally update the reference words and the compressed data sequences as more data sequences are added and new queries come along. Extensive experiments on a human genome database with 2.62 GB of DNA sequence letters show that the new algorithm achieves significantly faster response time than BLAST, while maintaining comparable accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.