Abstract

The double-star chopper cell modular multilevel converter (DSCC-MMC) has been employed in several applications as HVDC, energy storage, renewable energy, electrical drives and STATCOMs. Generally, the DSCC-MMC main circuit parameter design presented in literature considers balanced currents flowing through the converter. Nevertheless, in STATCOM application, the converter can compensate negative sequence components and unbalanced currents flow through the DSCC-MMC, resulting in different stresses in the converter phases. Therefore, this work presents a detailed design methodology of the DSCC-MMC main circuit parameters, considering both positive and negative sequence current compensations. The dc-link voltage, number of submodules, power semiconductor thermal stresses, submodule capacitance and arm inductances are designed. Expressions for the energy storage requirements are derived when negative sequence is compensated. A case study considering a 15-MVA STATCOM is presented, and simulation results validate the proposed design methodology. Finally, the converter power losses and thermal stresses in the power semiconductors are evaluated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.