Abstract

The tensile strength of gel-spun polyethylene fibers obtained after hot-drawing depends on spinning conditions such as spinning speed, spinning temperature, spinline stretching, polymer concentration, and molecular weight/molecular weight distribution. High deformation rates in the spinline result in shish-kebab structures which after hot-drawing lead to fibers with poor properties. This is in contrast to hot-drawn fibers obtained from gel-spun fibers with a lamellar structure. Lamellar or shish-kebab structures in the gel-spun fibers can be distinguished by means of DSC experiments on strained fibers. On the basis of these experiments a qualitative prediction of the final tensile properties can be made. DSC experiments on (un)strained hot-drawn fibers show that in the case of shish-kebab structures an incomplete transformation into a fibrillar structure takes place which partly explains the low tensile strength. Chain slippage which becomes possible after the orthorhombic-hexagonal phase transition is involved in the fracture mechanism. The shift of the orthorhombic-hexagonal phase transition to higher temperatures with increasing tensile strength indicates that the increase in strength corresponds to an increase in length of the crystal blocks. Consequently, creep failure also occurs at higher stresses. The melting behavior of cold-drawn and hot-drawn fibers is qualitatively similar, but the transformation into a fibrillar structure is more complete in the latter case.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call