Abstract

Abstract The unusual mechanical properties (i.e. shape memory effect and superelasticity) of shape memory alloys (SMA) rely on the thermoelastic martensitic transformation (TMT) which is a first-order solid-solid, non-diffusive phase transition, athermal in character. Differential scanning calorimetry (DSC) is often used as a convenient method of investigating the thermal properties ofSMAs. The common practice of standard temperature calibration, required for a correct instrument performance, is here critically discussed in relation to the study of both the direct exothermic transformation on cooling, and the reverse endothermic transformation on heating in a NiTiSMA. The DSC results show that, with the standard temperature calibration, the instrument is calibrated on heating but un-calibrated on cooling. A general method is advanced to overcome this problem, intrinsically related to the dynamic character of DSC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call