Abstract

Various kinds of polysaccharides found in a wide variety of plants, bacteria, crustaceans and insects form hydrogels via physical aggregation in aqueous media. The major mass of hydrogels is water filled, ca. 95 - 99.5%, in a network structure, although the solid shape of the gel is maintained. In this paper, firstly the wide range of gelation mechanisms are briefly described, and then the thermal analysis of representative gel-forming polysaccharides, such as carrageenan, alginate, galactomannan, and pectin, is introduced. By differential scanning calorimetry (DSC), gel-sol and the sol-gel transition temperature of thermoreversible hydrogels are measured and phase diagram is established. It is suggested that binary systems showing sinusoidal gel-sol-gel transition are capable of being assembled. By thermomechanical analysis (TMA), the dynamic modulus (E') at around 1 × 104 Pa of thermo-irreversible hydrogels was obtained using a sample holder designed to measure the viscoelastic properties in water. Reliable coordination is shown between the results obtained by DSC and TMA. In this review, the current research and several topics on concerning the thermal properties of polysaccharide physical hydrogels are introduced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.