Abstract
Isothermal melt-crystallization, glass transition and melting behavior of poly( l-lactide) (PLLA) with different molecular weights were investigated by using differential scanning calorimetry. Analysis by Avrami equation showed that crystallization was initiated by heterogeneous nucleation, followed by 3-dimensional growth. The maximum reciprocal half-time of crystallization (1/ t 1/2) was detected at 105 °C. Double endothermic peaks were observed around the glass transition for PLLA with intermediate crystallinities, indicating the coexistence of bulk-like and confined amorphous regions. Double-melting behavior was analyzed and combined with the equilibrium melting temperature evaluation by non-linear Hoffman–Weeks extrapolation, from which a value of 207.6 °C was deduced for PLLA of infinite molecular weight. Lauritzen–Hoffman theory was employed to analyze the crystallization kinetics. Regime II-III transition was found to occur at 120 °C for PLLA of lower molecular weight. The crystal morphology was also examined by scanning electron microscopy through chemical etching method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.