Abstract
Differential scanning calorimetry (DSC) is a powerful technique that measures the heat evolution from a sample under a controlled condition and studies the phase transformation, precipitation, and dissolution activities. In this work, we investigated the influence of admixed silicon and silicon carbide and the effect of different atmospheres on the heat flow properties and microstructure of atomized Al6061 powder using DSC and scanning electron microscopy. The DSC analysis revealed the addition of silicon considerably decreased the temperature of first endothermic peaks. With an increase in silicon content the enthalpy for the first endothermic peak increased, whereas the second endothermic peak decreased. An endothermic peak, indicating the formation of AlN, was observed for powders without the silicon addition, but was noticeably absent in the case of alloys with Si addition. The SiC addition has no influence on changing the enthalpy of the systems we investigated. The reason for this behavior is analyzed and presented in this article.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.