Abstract
The Dsb family of enzymes catalyzes disulfide bond formation in the gram-negative periplasm, which is required for folding and assembly of many secreted proteins. Pertussis toxin is arguably the most complex toxin known: it is assembled from six subunits encoded by five genes (for subunits S1 to S5), with 11 intramolecular disulfide bonds. To examine the role of the Dsb enzymes in assembly and secretion of pertussis toxin, we identified and mutated the Bordetella pertussis dsbA, dsbB, and dsbC homologues. Mutations in dsbA or dsbB resulted in decreased levels of S1 (the A subunit) and S2 (a B-subunit protein), demonstrating that DsbA and DsbB are required for toxin assembly. Mutations in dsbC did not impair assembly of periplasmic toxin but resulted in decreased toxin secretion, suggesting a defect in the formation of the Ptl secretion complex.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.