Abstract

Automatic medical image segmentation has made great progress owing to the powerful deep representation learning. Inspired by the success of self-attention mechanism in Transformer, considerable efforts are devoted to designing the robust variants of encoder-decoder architecture with Transformer. However, the patch division used in the existing Transformer-based models usually ignores the pixel-level intrinsic structural features inside each patch. In this paper, we propose a novel deep medical image segmentation framework called Dual Swin Transformer U-Net (DS-TransUNet), which aims to incorporate the hierarchical Swin Transformer into both encoder and decoder of the standard U-shaped architecture. Our DS-TransUNet benefits from the self-attention computation in Swin Transformer and the designed dual-scale encoding, which can effectively model the non-local dependencies and multi-scale contexts for enhancing the semantic segmentation quality of varying medical images. Unlike many prior Transformer-based solutions, the proposed DS-TransUNet adopts a well-established dual-scale encoding mechanism that utilizes dual-scale encoders based on Swin Transformer to extract the coarse and fine-grained feature representations of different semantic scales. Meanwhile, a well-designed Transformer Interactive Fusion (TIF) module is proposed to effectively perform the multi-scale information fusion through the self-attention mechanism. Furthermore, we introduce the Swin Transformer block into decoder to further explore the long-range contextual information during the up-sampling process. Extensive experiments across four typical tasks for medical image segmentation demonstrate the effectiveness of DS-TransUNet, and our approach significantly outperforms the state-of-the-art methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call