Abstract

In this paper, a multistage parallel interference canceller (MPIC) with multiple-beam reception for a DS-CDMA system is proposed to suppress multiple access interference (MAI) effectively. Its aim is to reduce the computational complexity of the conventional MPIC cascaded with an adaptive array antenna. It employs multiple fixed beams based on phased array and selects suitable beams to demodulate the transmitted signal of each user. Then it suppresses residual interference signals by the MPIC cascaded with multiple-beam receiver. Its bit error rate (BER) performance is evaluated by computer simulations assuming an uplink single-chip-rate multiple-spreading-factor DS-CDMA system over both exponentially decaying 5-path and equal average power 2-path Rayleigh distributed channels. When there are 16 users in an 120°-sectored single cell, the proposed receiver with 6-element array antenna and 2-stage MPIC shows better or comparable BER performance compared with that of the conventional receiver. Moreover, the proposed receiver with 8 beams can reduce the number of complex multiplications to about 40% of that of the complexity-reduced conventional receiver over 5-path channels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.