Abstract

Epithelial to mesenchymal transition (EMT), and focal adhesion kinase (FAK) facilitate lung cancer cell motility and survival. We, therefore, investigated the antimigratory effect of 3,4-dihydroxy-5,4'-dimethoxybibenzyl (DS-1) on human lung cancer cells. Cell viability and proliferation were examined by the 3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide assay. Filopodia formation, migration, and anchorage-independent growth assays were performed to assess metastatic behaviors while EMT-related proteins, integrins, and FAK-RhoA pathway were evaluated by western blot analysis. We found that DS-1 significantly inhibited the proliferation of lung cancer cells compared to the control. The aggressive behavior of cancer cells, including migration and invasion, was significantly reduced by DS-1. Anchorage-independent growth analysis provided evidence that DS-1 suppressed the growth and survival of cancer cells in detached conditions as indicated by the significant reduction in size and number of colonies. With regard to the mechanisms involved, we found that DS-1-suppressed EMT, as indicated by the reduction of EMT markers, namely N-cadherin, SNAIL and SLUG, and increased levels of the epithelial marker, E-cadherin. In addition, DS-1 was shown to reduce the level of integrin β1 protein and FAK activation. DS-1 suppressed lung cancer metastasis via suppressing EMT, integrin β1 expression and FAK-related signaling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call