Abstract

Modelling of drying processes without adjustable parameters is still a challenge. As emphasized in several previous works, this might partly be due to the impact of liquid films trapped in corners of the pore space. In this study, we present and analyse a drying experiment with a micromodel, which clearly shows the presence of corner films. In contrast with previous works, however, the corner films do not form a system of interconnected corner films extending over large regions in our micromodel. They rather form isolated capillary rings surrounding the solid blocks of the device, and thus, a quasi-two-dimensional version of liquid bridges often observed in the contact regions between grains in soils and packings of particles. These capillary rings essentially remain confined in the two-phase region. As a result, their impact on drying rate is much smaller than in systems favouring films hydraulically connected over long distances. The capillary liquid ring formation is taken into account in a pore network model of drying leading to satisfactory agreement with the experiment provided that the lateral pinning of liquid phase observed in the experiment is included in the model. Based on this, the model enriches the family of pore network models of drying and can be considered as a step towards the modelling of secondary capillary effects in drying in more complex geometry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.