Abstract

The environmental burden due to the production and use of Ordinary Portland Cement(OPC) has become significant in terms of resource use and atmospheric emissions. Alkali-activatedbinders have gained significant attention in recent years as a possible alternative to OPC. Concreteundergoes physical and chemical changes through its lifetime. These changes affect propertiesresulting in either increase or decrease of performance and serviceability. Concrete contracts due tothese changes leading to shrinkage. Shrinkage induces tensile stresses within the members, whichleads to a tendency of cracking, resulting in compromised durability. Shrinkage behavior analysis ofAlkali-Activated Concrete (AAC), without any external loading, is crucial to assess as there is limiteddata available. To further test for shrinkage under restraint conditions, mix development of AAC isnecessary. Mechanical properties and drying shrinkage potential of AAC are evaluated and comparedwith OPC concrete. Basic properties assessed to understand the performance of AAC are compressivestrength, splitting tensile strength and free drying shrinkage. Drying shrinkage test is performed as perASTM C157 for 90 days. Furthermore, the effect of different curing regimes (dry curing, three daysmoist curing, and seven days moist curing) on the mechanical properties and shrinkage is evaluated.The results show that drying shrinkage of AAC exhibit similar behavior to that of OPC concrete whilehaving better early-age strength under moist curing regimes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.