Abstract

Changes caused in the porous microstructure of ordinary Portland cement (OPC) mortars were studied using electrical impedance spectroscopy (EIS) and equivalent circuit (EqC). Two successive processes, at 20 °C and 50 °C, consisting of several drying-rewetting cycles, were applied to the mortars. After each cycle, the electrical impedance and the amount of water absorbed were measured. The EIS-EqC methodology allowed to find two distributed impedance relaxations, associated to capillary and gel-C-S-H porosities, respectively. At room temperature any microstructural change was not detected. Nevertheless, at 50 °C two microstructural changes were inferred: 1) the volume of accessible porosity increased (pore coarsening) and 2) the surface of the conductive path through C-S-H gel became more conductive (surface smoothing).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.