Abstract

ABSTRACTThe stage of maturity for Orthosiphon aritatus (OA) leaves revealed that stage I (young leaves) provided the highest bioactive compounds. Vacuum blanching (VB) for 75 s gave the highest sinensetin (28.4% increment) and eupatorin (21.0% increment) compared with heated water blanching (HWB). The modified Henderson model was the most suitable desorption isotherm model for the OA leaves. The VB and unblanched OA leaves were dried by different drying methods, including convection tray drying (CTD, 40–60°C), heat pump dehumidify drying (HPD, 40–60°C), mixed mode solar drying (64.6°C), and freeze-drying. Three-parameter model (TP) was the best model to explain all drying curves. The drying constant, K in the TP and activation energy were fitted to the Arrhenius model. Effective moisture diffusivities were increased with the VB, drying temperatures, and HPD. The highest specific moisture extraction rate was obtained from the VB and dried in the HPD at 60°C. The quality aspects of sinensetin (10.2% retention), eupatorin (10.7% retention), total phenolics, and antioxidant activity revealed the best quality for the OA leaves pretreated by the VB and dried in the HPD at 60°C and could reduce drying time by 44.8% compared with the CTD. The VB of the OA leaves and dried using the HPD at 60°C were recommended.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.