Abstract
d-α-Tocopherol polyethylene glycol 1000 succinate (TPGS)-stabilized nanosuspensions (25 wt%, relative to the drug weight) were produced by media milling for 9 model drug compounds [cinnarizine, griseofulvin, indomethacin, itraconazole, loviride, mebendazole, naproxen, phenylbutazone and phenytoin]. After 3 months of storage at room temperature, Ostwald ripening occurred in all of the samples, except for indomethacin. Whereas lowering the temperature could slow down the ripening, it markedly increased upon storage at 40 °C. As for ripening, settling generally became more pronounced at 40 °C compared to 4 °C. As the nanosuspensions were afflicted by Ostwald ripening and settling, we explored nanosuspension drying as a strategy to circumvent these stability issues. Spray-drying and freeze-drying were evaluated for nanosuspensions and coarse reference suspensions of the compounds. Nanoparticle agglomeration could be visually observed in all of the powders. To evaluate the effect of agglomeration on the key characteristic of drug nanocrystals (i.e. rapid dissolution), dissolution experiments were performed under poor sink conditions. It was found that the compounds could be categorized into 3 groups: (i) compounds for which it was impossible to differentiate between coarse and nanosized products (griseofulvin, mebendazole, naproxen), (ii) compounds that gave clear differences in dissolution profiles between the nanosized and the coarse products, but for which drying of the nanosuspensions did not decrease the dissolution performance of the product (indomethacin, loviride, phenytoin) and (iii) compounds that showed differences between coarse and nanosized products, but for which drying of the nanosuspensions resulted in a significant decrease of the dissolution rate (cinnarizine, itraconazole, phenylbutazone). To gain insight on the influence of the drug compound characteristics on the dissolution of the dried products, the dissolution behavior of the compounds of the second and the third group was linked to the compound's characteristics. It was found that compounds with a more hydrophobic surface resulted in agglomerates which were harder to disintegrate, for which dissolution was compromised upon drying. The same was found for compounds having higher log P values.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.