Abstract

Onion slices were dehydrated in a single layer at drying air temperatures ranging from 50~70℃ in a laboratory scale convective hot-air dryer at an air velocity of 0.66 m/s. The effect of drying air temperature on the drying kinetic characteristics were determined. It was found that onion slices would dry within 210~460 min under these drying conditions. Moisture transfer during dehydration was described by applying the Fick's diffusion model and the effective diffusivity changed between 1.345×10?? and 2.658×10?? ㎡/s. A non-linear regression procedure was used to fit 9 thin layer drying models available in the literature to the experimental drying curves. The Logarithmic model provided a better fit to the experimental drying data as compared to other models. Temperature dependency of the effective diffusivity during the hot-air drying process obeyed the Arrhenius relationship with estimated activation energy being 31.36 kJ/㏖. The effect of the drying air temperature on the drying model constants and coefficients were also determined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.