Abstract

Maize cobs (with husk and without husk) with initial moisture content of 78.38 % and 62.39 % (d.b.), respectively, were dried up to 20 % moisture content (d.b.) at three temperatures (45°C, 55°C and 65°C). Moisture ratios (MR) were calculated from moisture loss data and fitted to six (Newton’s, Page, Thompson, Modified Page, Henderson and Pabis, and Wang and Singh) drying mathematical models. Coefficient of determination (R2) and root mean square error (RMSE) were used for comparison of the models. From the analyses, Modified Page model showed the best fit to the experimental data with R2 varying from 0.9924 to 0.9968 for maize cob with husk and 0.9994 to 9989 for cobs without husk at given drying temperatures. The Modified Page model was found to be a superior model representing the drying kinetics of maize cob with and without husk at drying temperatures of 45, 55, and 65°C. The increase in drying temperature caused a reduction in drying time, and the drying took place in the falling rate period. Maize cobs with husk took more time for drying as compared to that without husk at the same temperature. The values of effective diffusivity lied between 1.079×10-8 m2.s-1 and 4.239×10-8 m2.s-1 for maize cob with husk, and between 1.194×10-8 m2.s-1 and 5.230×10-8 m2.s-1 for maize cob without husk. Effective diffusivity increased with increase in drying temperature, and was higher for maize cob without husk than that of with husk.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.