Abstract

Moisture is one of the most deteriorating factors of buildings. The moisture content depends on hygroscopic equilibrium between buildings materials and environment, which is determined by the drying and wetting rate of masonry. So, the moisture content is not only determined by the water that is absorbed by the material, but also by the amount of water that is evaporated under favourable conditions, which is described by the drying process.This work presents the results of an experimental evaluation of the drying kinetics of solid red brick, considering the bulk moisture transfer. The drying kinetics was assessed considering different environment conditions (air temperature and humidity). The experimental results showed that the drying flux is extremely dependent of temperature and relative humidity in the first stage of the drying process. The values obtained were between 0.025 kg/m2h (T=15oC and RH=80%) and 0.135 kg/m2h (T=30oC and RH=50%), for the worst and better drying ambient conditions.Different first-order kinetics models, available in the literature, were adjusted to describe the drying process and estimate the equilibrium moisture content of the samples. The results point that Midilli et al. model allows the best fit and that the drying time constant is strongly affected by the drying air conditions. It was also estimated the apparent molecular diffusion coefficient for solid red brick samples and its variation with temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.