Abstract

Drying kinetics of coir pith was studied and the properties of compressed coir pith discs were analyzed. Coir pith particles were oven dried in the range of temperatures from 100 to 240 °C and the rehydration ability of compressed coir pith was evaluated by finding the volume expansion. The optimum drying temperature was found to be 140 °C. Hot air drying was carried out to examine the drying kinetics by allowing the coir pith particles to fluidize and circulate inside the drying chamber. Particle motion within the drying chamber closely resembled the particle motion in a flash dryer. The effective moisture diffusivity was found to increase from 1.18 × 10−8 to 1.37 × 10−8 m2/s with the increase of air velocity from 1.4 to 2.5 m/s respectively. Correlation analysis and residual plots were used to determine the adequacy of existing mathematical models for describing the drying behavior of coir pith. The empirical models, Wang and Singh model and Linear model, were found to be adequate for accurate prediction of drying behavior of coir pith. A new model was proposed by modifying the Wang and Singh model and considering the effect of air velocity. It gave the best correlation between observed and predicted moisture ratio with high value of coefficient of determination (R2) and lower values of root mean square error, reduced Chi square (χ2) and mean relative deviation (E%).

Highlights

  • Coconut is the third main crop in Sri Lanka and Sri Lanka is the fourth largest producer of coconut in the world contributing to an average of 2500–2800 million nuts per year (Sri Lanka Coconut Statistics 2014)

  • Based on the statistical significance at a confidence level of p < 0.05, results of volume expansion can be categorized into two groups; drying temperature of ≥160 °C and the drying temperature of ≤140 °C

  • 0.0149 21.45 0.0175 23.95 0.0193 27.97 0.0248 54.84 0.0284 82.19 0.0247 60.52 0.0271 69.26 0.0351 102.52 0.0111 7.26 0.0126 7.77 0.0128 16.15 0.0149 5.67 increase of χ2 value is only marginal. These results suggest that the new model is the most suitable model for describing the drying kinetics of coir pith using hot air with fluidization and circulation

Read more

Summary

Introduction

Coconut is the third main crop in Sri Lanka and Sri Lanka is the fourth largest producer of coconut in the world contributing to an average of 2500–2800 million nuts per year (Sri Lanka Coconut Statistics 2014). Only about 10 % of the global production of coconuts (73,811 million nuts per year) is utilized in the coir industry. Sri Lanka is considered as a major coir fiber exporting country in the world, only second to India. Coir pith is a waste material generated from the husks of coconut (Cocos nucifera L.) during the extraction of coir fiber. Compressed value added coir pith products such as bales, briquettes, discs and grow bags contribute to more than 11 % of the total export earnings from coconut products in Sri Lanka (Sri Lanka Coconut Statistics 2012).

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call