Abstract
Drying cellulosic materials from their water-swollen state can collapse their ultrastructure and alter their macroscopic material properties such as mechanical strength and water-retention ability. However, at the single-crystal or molecular level, little is known about the deformation of cellulose upon drying. We thus investigate herein the drying-induced deformation of a cellulose crystal by using an atomistic molecular dynamics simulation that considers a hydrated system composed of two short cellulose crystals, a lower one fixed to a flat substrate and an upper one free to deform. To mimic vacuum drying, the water is gradually removed from the system. As the drying proceeds, the upper cellulose crystal bends and forms a tight contact with the lower cellulose crystal. This result underlines the importance of lateral deformation of cellulose crystals in the collapse of the cellulose ultrastructure and provides insights into the molecular mechanisms responsible for modifying the properties of cellulose materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.