Abstract

Drying dissipative patterns of deionized suspensions (colloidal crystal state at high concentrations) of the thermo-sensitive gels of poly(N-isopropylacrylamide) with low degree of cross-linking of 0.5% (318 nm and 116 nm in the hydrodynamic diameter at 25 °C and 45 °C) were observed at 20 °C and 45 °C on a cover glass, a watch glass and a Petri glass dish. The broad rings were observed and their size decreased as micro-gel concentration decreased. Formation of the monodispersed agglomerated particles and their ordered arrays were observed. This work clarified the formation of the drying microscopic structures of (a) flickering ordered spoke-lines, (b) ordered rings, (c) net structure, and finally (d) lattice-like ordered structures of the agglomerated particles. The net and lattice structures formed more favorably at higher temperatures and/or higher degree of cross-linking of the gels. Importance of the convectional flow of the agglomerated particles during the drying processes is supported for the ordered array formation. The role of the electrical double layers around the agglomerated particles and the interaction of the particles with the substrate surfaces during dryness are also important for the ordering. The microscopic drying patterns of gel spheres were quite different from those of linear-type polymers and also from typical colloidal spheres, though the macroscopic patterns such as broad ring formation at the edges of the dried film were similar to each other.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.