Abstract

A new experimental method which allows the direct separation of the components of drying creep due to microcracking and stress-induced shrinkage is developed, demonstrated and validated. The basic idea is to compare the curvature creep of beams subjected to the same bending moment but very different axial forces. The results confirm that drying creep has two different sources: microcracking and stress-induced shrinkage. The latter increases continuously, whereas the former first increases and then decreases. The test results are fitted using a finite element model. The results validate the present model for drying creep. The microcracking is described by an established model, and the free (unrestrained) shrinkage of a material element is shown to depend approximately linearly on the humidity drop.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.