Abstract

This study uses neutron radiography to evaluate the drying of printed cement paste samples containing cellulose nanocrystals (CNCs). CNCs have previously been used in printed cement paste to decrease the extrusion pressure and increase the degree of hydration (DOH) of the samples. Three different mixtures were prepared consisting of a plain mixture and mixtures containing two different types of CNCs. The influence of the sample surface to volume ratio (S/V) on the drying of cement paste samples and their DOH was examined. Exposing 3D printed samples to drying immediately after preparation can lead to high levels of water evaporation, which can limit the hydration evolution in the system and increase the porosity. The DOH and the drying behavior of cement paste are found to be dependent on the S/V of the element. The DOH decreased with an increase in the S/V of the sample. The addition of the CNCs to the mixture design did not substantially alter the DOH of poorly cured 3D printed samples. Previous work has shown that CNCs addition to the mixture design can lead to an increase in DOH only if water remains in the sample.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.