Abstract

We perform molecular dynamics simulations of the hydrophobic collapse of two paraffin plates to examine how the collapse is mediated by realistic paraffin-water attractive van der Waals forces. We explore several aspects of the drying transition between the plates, including the critical separation for drying and the critical size of the vapor bubble required for the nucleation of the drying event. We also investigate the kinetics of hydrophobic collapse and find that the hydrophobic collapse occurs in about 100 ps. We compare these results with the simulations with the plate-water van der Waals attractions turned off and with recent results on the hydrophobic collapse of multidomain proteins. Last, we discuss the relationship among the dewetting transition critical distance, van der Waals potential well depth, and water contact angle on solute surface using a simple macroscopic theory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.