Abstract

ABSTRACTMelamine formaldehyde (MF) resins are widely used for the gluing and surface coating of wood‐based consumer products in the interior design of living environments. MF resins are especially relevant in decorative laminate applications because of their good performance‐to‐price ratio. In their industrial processing, an important intermediate state is the liquid MF prepolymer that is used for decorative paper impregnation. Here, the drying of impregnated papers is investigated with respect to premature curing. A new method to quantify water release upon drying that allows estimation of the degree of undesired precuring is described. Since curing proceeds via polycondensation, crosslinking brings about the release of water molecules. By thermogravimetric analysis (TGA), drying was studied in terms of water release due to physical drying (elimination of “dilution water”) and chemical crosslinking of the prepolymer to a three‐dimensional MF network (elimination of chemically liberated water). The results obtained by TGA/IR spectroscopic analysis of the liberated volatiles show that the emission of water from b‐stage MF can be clearly analytically separated into a physical (evaporation of dilution water) and a chemical (liberation via condensation) sequence. TGA experiments were correlated with curing experiments performed with differential scanning calorimetry (DSC) to estimate the residual crosslinking capacities of the impregnated papers. The drying conditions used during the preparation of impregnated decorative papers seemed to significantly affect their remaining reactivity only when harsh drying conditions were used. Upon heat exposure for prolonged time, precuring of the oligomer units results in a shift of the temperature maxima in TGA. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014, 131, 39860.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.