Abstract

A range of new experimental techniques is developed to quantify drying-air induced disturbances on low viscosity single and multi-layer coating systems. Experiments on prototype slide-bead coating systems show that the surface disturbances take the form of a wavelike pattern and quantify precisely how its amplitude increases rapidly with wet thickness and decreases with viscosity. Heat transfer measurements show that the redistribution of water to form an additional lower viscosity carrier layer while increasing the solids concentration of the upper layer or layers enables the maximum drying rate, for which drying-air induced surface disturbances are acceptably small, to be increased with significant commercial benefits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.