Abstract
Dry-heating is considered to be one of the most promising approaches to improving the functionality of food proteins. It has been shown that even if only minor structural modifications occur during dry-heating, the foaming properties of proteins are highly improved. With the recent results obtained in the field of foam stabilization by nanoparticles or protein aggregates in mind, a study was undertaken on the impact of dry-heating of lysozyme, used as a model protein, on its foaming properties. This work highlighted the fact that dry-heated hen egg white lysozyme simultaneously exhibited enhanced foaming properties and aggregation capacity. Although the conditions that favored bulk aggregation (high ionic strength, pH, treatment duration, and protein concentration) also favored foaming properties, the large bulk aggregates were not essential to obtain the best functionality. It is envisaged that heat-treated lysozyme may self-associate at the air/water interface, stabilizing air bubbles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.