Abstract
The present work investigates the phenomena of whip and whirl for a rigid rotor contacting at two bearing locations. The idea originated with a paper by Clark et al. in 2009 on an anemometer undergoing dry friction whip and whirl. The anemometer rotor was supported by two Teflon® bushings within an elastically supported housing. The dry-friction forces arose at the bushings. Prior models for dry friction whirl and whip have considered rub at one non-support location. The present analytical model consists of a rigid rotor connected to a rigid stator at two rubbing contact locations. Analytical solutions are developed for the following normal reaction forces at the contact locations: (1) In phase, and (2) 180 degrees out of phase. Analytical solutions are only possible for the same RCl (Radius to Clearance ratio) at the two rub locations and define regions where dry-friction whirl is possible plus indication possible boundaries between whirl and whip. These solutions are similar to Black’s in 1968. A flexible-rotor/flexible-stator model with nonlinear connections at the bearings was developed to more correctly establish the range of possible solutions. The nonlinear connections at the rub surface are modeled using Hunt and Crossley’s 1975 contact model with coulomb friction. Dry friction simulations are performed for the following rotor center of gravity (C.G.) configurations: (1) Centered, (2) 3/4 contact-span location and (3) Overhang location outside the contacts. Results from the in-phase analytical solutions and the nonlinear simulations agree to some extent with the rotor mass centered and at 3/4 location in that whirl-to-whip transitions occur near the pinned rotor-stator bounce frequency. For the overhung mass case, the nonlinear simulation predicts whip at different frequencies for the two contact locations. Neither analytical solution modes predicts this outcome. No out-of-phase solutions could be obtained via time-transient simulations. Dry-friction whirling is normally characterized as supersynchronous precession with a precession frequency equal to running speed times RCl. Simulation predictions for models with different RCl mimic whirling. Simulation predictions show increasing backward precessional (BP) frequency with increasing rotor speeds. However, individual contact velocities show slipping at all conditions. Slipping is greater at one location than the other, netting a “whirl-like” motion. For the overhung model with different RCl ratios, apart from whipping at different frequency the two contacts also whirl at different frequencies corresponding to the RCl at the respective contacts. Simulations predict a different running speed for the “jump up” in precession frequency associated with a transition from whirl-to-whip with increasing running speed than for the jump-down in precession frequency for whirl-to-whip in a speed-decreasing mode.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.