Abstract

We propose a multi-sensor multi-spectral and bi-temporal dual-polarimetric Synthetic Aperture Radar (SAR) data integration scheme for dry/wet snow mapping using Sentinel-2 and Sentinel-1 data which are freely available to the research community. The integration is carried out by incorporating the information retrieved from ratio images of the conventional method for wet snow mapping and the multispectral data in two different frameworks. Firstly, a simple differencing scheme is employed for dry/wet snow mapping, where the snow cover area is derived using the Normalized Differenced Snow Index (NDSI). In the second framework, the ratio images are stacked with the multispectral bands and this stack is used for supervised and unsupervised classification using support vector machines for dry/wet snow mapping. We also investigate the potential of a state of the art backscatter model for the identification of dry/wet snow using Sentinel-1 data. The results are validated using a reference map derived from RADARSAT-2 full polarimetric SAR data. A good agreement was observed between the results and the reference data with an overall accuracy greater than 0.78 for the different blending techniques examined. For all the proposed frameworks, the wet snow was better identified. The coefficient of determination between the snow wetness derived from the backscatter model and the reference based on RADARSAT-2 data was observed to be 0.58 with a significantly higher root mean square error of 1.03% by volume.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call