Abstract

Drought is one of the main factors limiting rice (Oryza sativa L.) productivity and has become an increasingly severe problem in many regions worldwide. Establishing breeding programs to develop new drought-tolerant varieties requires an understanding of the effect of drought on rice plants and the mechanisms of drought tolerance in rice. We conducted a pot experiment to explore growth characteristics, root plasticity, and stomatal conductance in six rice varieties (DA8, Malagkit Pirurutong, Thierno Bande, Pate Blanc MN1, Kinandang Patong, and Moroberekan) in response to different drought stress and re-watering conditions. Drought stress significantly depressed plant growth, root size, and stomatal conductance in all experimental varieties. These negative effects depended on both the variety and the severity of the drought stress treatment. Under moderate drought stress (10 days after drought treatment), growth was less influenced in roots than in shoots. In contrast, there was an opposite trend under severe drought stress (15 days after drought treatment), with growth being more severely affected in roots than in shoots. Rice plants recovered from drought stress in terms of dry matter accumulation, root size, and stomatal conductance after re-watering; however, the recovery pattern differed among varieties. DA8 exhibited the highest dry weight accumulation and root size (root length, root surface area, root volume, fine root length, and thick root length) under well-watered, drought stress, and re-watering conditions. Kinandang Patong showed the highest recovery ability in dry matter accumulation, root length, root surface area, and stomatal conductance after re-watering. Malagkit Pirurutong expressed the poorest recovery ability in dry matter accumulation after re-watering. These three varieties might be selected for further experiments focusing on the mechanisms of drought tolerance and recovery ability in rice.

Highlights

  • IntroductionWater is supplied to satisfy crop requirements during the growth period

  • In irrigated lowland rice, water is supplied to satisfy crop requirements during the growth period

  • There was an opposite trend under severe drought stress (15 days after drought treatment), with growth being more severely affected in roots than in shoots

Read more

Summary

Introduction

Water is supplied to satisfy crop requirements during the growth period. Plant water deficit occurs when the crop water demand exceeds supply. Drought is defined as a period when moisture availability is insufficient for maximum or potential growth of crops. In rain-fed ecosystems, drought is the major obstacle to rice production. Developing varieties resistant to drought is considered a promising approach to increase rice yields in drought-prone environments. This approach requires an understanding of rice plant responses to drought and the mechanisms of drought tolerance in rice

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.