Abstract

In this paper, we consider an infinite-dimensional extension of Chua's circuit (Fig. 1) obtained by replacing the left portion of the circuit composed of the capacitance C2 and the inductance L by a lossless transmission line as shown in Fig. 2. As we shall see, if the remaining capacitance C1 is equal to zero, the dynamics of this so-called time-delayed Chua's circuit can be reduced to that of a scalar nonlinear difference equation. After deriving the corresponding 1-D map, it will be possible to determine without any approximation the analytical equation of the stability boundaries of cycles of every period n. Since the stability region is nonempty for each n, this proves rigorously that the time-delayed Chua's circuit exhibits the "period-adding" phenomenon where every two consecutive cycles are separated by a chaotic region.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.