Abstract

Sweat is gaining popularity in clinical metabolomics as this biofluid is non-invasively sampled and its composition is modified by several pathologies. There is a lack of standardized strategies for collection of human sweat. Most studies have been carried out with fresh sweat collected after stimulation. A promising and simple alternative is sampling dry sweat by a solid support impregnated with a suited solvent. This research was aimed at comparing the metabolomics coverage provided by dry sweat collected by two solid supports (gauzes and filter papers) impregnated with different solvents. The dissolved dry sweat was analyzed by a dual approach: gas chromatography–mass spectrometry (GC–MS) and liquid chromatography–tandem mass spectrometry (LC–MS/MS). Among the tested sampling strategies, filter paper impregnated with 1:1 (v/v) ethanol‒phosphate buffer resulted the combination providing the highest metabolomics coverage (tentative identification of one hundred seventy-five compounds). Dry and fresh sweat were compared by using pools from the same individuals to evaluate compositional differences. Families of metabolites such as carnitines, sphingolipids and N-acyl-amino acids, among others, were exclusively identified in dry sweat. Comparison of both samples allowed concluding that dry sweat is better for analysis of low polar metabolites and fresh sweat is more suited for polar compounds. As most of the identified metabolites are involved in key biochemical pathways, this study opens interesting possibilities to the use of dry sweat as a source of metabolite markers for specific disorders. Sampling of dry sweat could provide a standardized approach for collection of this biofluid, thus overcoming the variability limitations of fresh sweat.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.