Abstract

The dry sliding characteristics of three in situ Al2O3/Al-Si composites fabricated with volume fraction of 10, 20 and 30 vol.% were investigated. The effect of sliding parameters on the wear properties was investigated. As the sliding velocity increases the wear loss decreases systematically. When the volume fraction increased to 20 vol.%, an improvement of wear resistance was obtained. However, when the volume fraction was 30 vol.%, a further decrease of wear resistance was observed. In case of low volume fraction (10 vol.%), an extensive plastic deformation by plowing out the ductile Al matrix along with narrow grooves was observed. As the volume fraction increased to 20 vol.%, the abrasive wear by micro grooving is dominant as well as the low load is used. Whereas, when the volume fraction increased to 30 vol.%, besides the effect of large pores, the embedded Al2O3 in the massive Si blocks formed a weaker interface thereby behaving as source of crakes initiation and propagation. As result, fracture, micro-cutting and delaminating are observed as dominant abrasive wear mechanisms

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.