Abstract

Dry sliding block-on-ring wear tests were performed on a squeeze cast A390 Al alloy, a high pressure die cast 20%SiC–Al MMC, and a newly developed as-cast 50%SiC–Al MMC. The testing conditions spanned the transition that control the mild to severe wear for all materials. The results show that the sliding wear resistance increases as SiC particle volume fraction increases. The critical transition temperature, at which wear rates transit from mild to severe, also increases with increasing SiC content. Examination of the wear surfaces, the subsurface characteristics, and the wear debris indicate that a hard ‘mechanically alloyed’ layer, high in SiC content, forms on the sliding surface of the 50%SiC composite. This layer prevents the surface adhesion wear mechanisms active in the A390 alloy, and it inhibits delamination wear mechanisms that control the mild wear of the 20%SiC composite. As a result, mild wear of the 50%SiC composite occurs by an oxidation process. In the 20%SiC material, severe wear occurs as a consequence of material removal by a flow-related extrusion-like process. In contrast, the high SiC content prevents plasticity in the 50%SiC composite, which eventually is susceptible to severe wear at very high temperatures (≈450°C) due to a near-brittle cracking processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.