Abstract

PurposeThis study aims to evaluate the dry-sliding tribological properties of fine-grained tin–bronze alloy under reciprocating sliding conditions.Design/methodology/approachA fine-grained tin–bronze alloy was processed by multiaxial forging (MAF) and annealing treatment. Friction and wear experiments were conducted on a reciprocating sliding tribometer. Microstructure, tensile mechanical properties, hardness, wear rate, friction coefficient and wear morphologies of coarse-grained sample, MAF sample and MAF and annealing sample were compared.FindingsAfter MAF, the strength and hardness increased distinctly, but the elongation decreased. The wear rate is increased, though friction coefficient is lower. Weaker work hardening leads up to higher sliding wear rate. After MAF and annealing, the alloy has higher strength, hardness and elongation. Lower wear rate of the alloy is correlated with the higher hardness, elongation and work hardening. The adhesion wear and abrasive wear are the primary wear mechanism.Originality/valueIt was found that the fine-grained alloy shows lower sliding wear rate only by combining severe plastic deformation with heat treatment. The process of MAF and annealing is useful in improving the wear resistance of tin–bronze alloy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call