Abstract

Under methane dry reforming conditions, Co has an impact on the stability and activity of Co-La1−xCaxNiO3-ZrO2 catalyst. In the course of the reduction reactions of perovskite precursors, the catalytic performance of Co-based bimetallic catalyst was evaluated. TEM, BET, H2-TPR, TGA, NH3-TPD, XRD and CO2-TPD techniques were used to characterize the catalyst and investigate the metal-metal/metal-support interactions as well as the phase changes that occurred under the reaction conditions. The catalyst with the highest activity was the 2%Co- La0.2Ca0.8NiO3-ZrO2 due to the synergistic interaction between Ni (in the perovskite) and Co. Thus, the inclusion of Co in the catalyst, promoted the removal of carbonaceous deposits from its surrounding active sites, which in turn improved the catalyst’s activity and stability. The synergistic effects of Ni-Co in the catalyst’s lattice, enhanced the catalyst’s performance as well as reduced the formation of carbon. Therefore, the 2%Co-La0.2Ca0.8NiO3-ZrO2 exhibited the most excellent catalyst stability, activity and the mildest carbon deposition with high CO2 and CH4 conversions of 90% and 88% respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call