Abstract
Dry reforming of methane (DRM) is a challenging process wherein methane reacts with CO2 to give syngas. This reaction is strongly endothermic, typically requiring temperatures higher than 500 °C. Catalysts can be used, but the high temperatures (which are a thermodynamic requirement) often lead to catalyst deactivation. Herein, the reaction from another conceptual direction is approached, using low‐power radio frequency inductively coupled plasma (RF‐ICP). It is demonstrated that this system can give high conversions of methane and CO2 at near‐ambient temperatures. Importantly, the energy costs in this system are considerably lower compared with other plasma‐driven DRM processes. Furthermore, it is shown that the yield of hydrogen can be increased by minimizing the C2 compound formation. The factors that govern the DRM process and discuss Hα emission and its influence on H atom recycling in the process are examined.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Energy Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.