Abstract

Dry reforming of methane (DRM) has attracted attention as an eco-friendly technology that generates synthetic gas from two main greenhouse gases, CH <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">4</inf> and CO <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</inf> . However, the catalysts applied for DRM are easily deactivated due to carbon deposition and sintering at high temperature. In this study, to prevent deterioration of the catalyst performance due to carbon deposition, Ru was added to the Ni-based catalyst to enhance its activity and coking-resistant properties. Changes in the specific surface area, reduction temperature, metal dispersion, and CO <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</inf> adsorption characteristics were investigated to support the use of a small amount of Ru metal. The DRM reaction was conducted by injecting the reactant with CH <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">4</inf> :CO <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</inf> :N <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</inf> = 1:1:1 at a gas hourly space velocity of 144,000 ml/h∙g <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">cat</inf> in the temperature range of 600-750 °C. While investigating the effect of adding Ru, the Ni–Ru bimetallic catalyst showed better catalytic activity than the Ni/MgAl <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</inf> O <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">4</inf> catalyst. In particular, the Ru-Ni(D)/MgAl <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</inf> O <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">4</inf> catalyst prepared by simultaneously precipitating Ni and Ru showed high metal dispersion and improved low-temperature reduction properties. It also exhibited the best catalytic activity and coke resistance properties in the DRM reaction experiment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.