Abstract
The increasing anthropogenic emission of greenhouse gases (GHGs) is causing global warming which is a matter of deep public concern. Dry reforming of methane (DRM) is an attractive means of reducing the emission of GHGs, because it can convert CO2 and CH4 into syngas. Non-thermal plasma has been investigated for use in DRM and the results demonstrate that plasma can convert CO2 and CH4 into syngas at a lower temperature than catalysis, but the specific energy is relatively high. Combining a catalyst with non-thermal plasma in hybrid system can produce various synergistic effects that reduce specific energy. In this work, BaZr0.05Ti0.95O3 (BZT) with a perovskite structure and ferroelectric property is packed into the plasma reactor to form a hybrid system. The syngas generation efficiency of BZT with a spark discharge reactor is investigated. The spark discharge reactor yields 49.4% conversion of CO2 and 52.5% conversion of CH4 and the BZT packed bed reactor yields 79.0% conversion of CO2 and 84.2% conversion of CH4. With respect to energy utilization, the BZT packed bed reactor has an specific energy of 0.218MJ/mol, which is 18.7% lower than that of the spark discharge reactor without a ferroelectric (0.268MJ/mol). Characterization of BZT reveals that the presence of BZT increases the charge density in the plasma reactor, favoring CO2 and CH4 dissociation. Also, SEM and XPS results show that BZT is modified with plasma, resulting in a positive synergy between the plasma and the ferroelectric.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.