Abstract

The dry mycelium of Penicillium chrysogenum (DMP) induces systemic acquired resistance (SAR), which enhances defenses in plants. To understand the molecular mechanisms involved in DMP-mediated signaling pathways, we examined the mRNA levels in Arabidopsis with jasmonic acid (JA), DMP or salicylic acid (SA) treatment compared with a control. RNA-Seq based transcriptome analysis revealed that the differentially expressed genes (DEGs) after DMP treatment were significantly enriched in three metabolism pathways shared by SA treatment and one additional pathway shared by JA treatment. Key DEGs, including PR1, EIN3 and FRK1, in the SA, JA/ethylene (ET) and pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) pathways for inducing resistance were significantly regulated. Further quantitative real-time PCR (qRT-PCR) analysis revealed that DMP-mediated signaling cross-talked with JA and SA signaling and associated with PAMP-triggered immunity. SA accumulated significantly after DMP treatment. However some known small molecules inducing SA accumulation were not found in DMP. Together, we demonstrated that DMP treatment activated defense in SAR via gene regulation in the JA and SA pathways. These results provide molecular evidence for the mechanisms in the DMP induced SAR and could guide the further identification of the activators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.