Abstract

This paper aims to improve the surface quality of 316L stainless steel parts manufactured by selective laser melting (SLM) using dry mechanical-electrochemical polishing (DMECP). DMECP is an advanced surface finishing method combining the advantages of both mechanical and electrochemical polishing techniques in a more environmentally friendly manner. In this paper, the SLM process-related defects causing poor surface quality are analysed first. The material removal mechanism of DMECP is investigated to continuously remove the oxide layers formed during polishing. Surface morphology and roughness evolution under different polishing conditions are characterised. The top surface roughness can be reduced by over 91% from 8.72 μm to 0.75 μm compared to side surface by over 93% from 12.10 to 0.80 μm. The material removal on the top surface is more efficient than that on the side surface under the same polishing condition. The secondary defects formed during polishing can be removed using mechanical polishing mode. The chemical element composition of the polished surface exhibits almost identical content to the initial 316L powders. Compared with the initial dark and rough surfaces, the results validate the capability of DMECP as an effective tool to improve the SLM surface quality and achieve a mirror finish.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.