Abstract

The mechanisms responsible for fluctuations in species composition of semi-natural grassland are not well understood. To identify plant traits that determine the poor competitive ability of Festuca pratensis compared to Dactylis glomerata especially during summer, the growth of both grasses was monitored over time and at different temperatures and photoperiods. Plants of both grasses were grown from seed with non-limiting nutrient supply at three day/night temperatures (11/6, 18/13 and 25/20°C) and two photoperiods (16 and 12 h). F. pratensis had a significantly lower relative growth rate than D. glomerata, mainly due to its lower specific leaf area and reduced nitrogen productivity. At high temperature, F. pratensis had a considerably lower root weight ratio than D. glomerata leading to substantially slower root growth. F. pratensis responded to a shorter photoperiod with an increase in the net assimilation rate, whereas D. glomerata responded with an increase in specific leaf area. The low competitive ability of F. pratensis compared to D. glomerata was mainly associated with its lower specific leaf area and nitrogen productivity. The stronger decline of its competitive ability during summer was probably related to the decreased allocation of dry matter to the roots at higher temperatures which leads to slower root growth compared to D. glomerata.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.