Abstract

Lignite predrying and dry lignite firing is considered as an important development step for the next generation of lignite power plants. The integration of a predrying system in future lignite power plants, which utilizes low temperature steam for the drying process, combined with the further thermal utilization of lignite’s evaporated moisture, may bring an efficiency increase of four to six percentage points compared with today’s state of the art. Firing predried lignite is however expected to cause certain changes in the combustion behavior of large scale boilers. The investigation of these changes in an existing Greek utility boiler through experimental activities and numerical simulations is the scope of the present work. The investigations take place in a 75 MWth lignite fired Greek boiler. The specific unit is equipped with dedicated dry lignite burners. The measurements are performed with a dry lignite thermal share of 6%. Higher cofiring thermal shares of up to 20% are further simulated and the e...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.